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Abstract – This paper introduces several feature
extraction and selection techniques. Previous studies
showed good results when neural networks are
applied to the small-signal stability assessment.
However, the use of reduction techniques can
decrease the number of features and thus the
number of quantities, which need to be observed,
measured, and transmitted, respectively. Moreover,
a small number of features allows a quick training of
the NN. In this study, three methods are presented:
Feature extraction by using a NN as encoder, the
principle component analysis, and a selection
technique by clustering NN input features. These
methods allow a feature reduction up to 75%.
Following the reduction, examples are calculated for
the prediction of the most important three inter-area
modes of the European Interconnected Power
System.
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1 INTRODUCTION

The European interconnected power system, also
known as UCTE/CENTREL, consists of the
western European Union for the Coordination of
Transmission of Electricity (UCTE) and the central
European power system (CENTREL), which
includes the central European countries Poland,
Hungary, the Czech and Slovak Republic. Due to
the recent integration of the CENTREL power
system, the European network has grown rapidly.
Further extensions, e.g. in the Balkan area, are
under investigations.
The integration of the two large power systems
(UCTE and CENTREL) led to a different stability
behavior. Although the European network is
strongly mashed, it includes parts with high power
concentration, which could swing against each
other. Inter-area oscillations are observed
particularly when two or more net groups in the
power system (i.e. power supply companies)
exchange energy. These so-called inter-area

oscillations are slow damped oscillations with
quite low frequencies.
In the European system, small-signal stability is
largely a problem of insufficient damping of these
oscillations [1,2].
With the deregulation of the electricity market in
Europe, the utilities are allowed to sell their
generated power outside their traditional borders
and compete directly for customers.
For economical reasons, the operators are often
forced to steer the system closer to the stability
limits. Thus, the operators need different
computational tools for system stability. These
tools must be accurate and fast to allow on-line
stability assessment.
The small-signal stability method, the modal
analysis, is based on the computation of
eigenvalues and eigenvectors [3]. The inter-area
modes are associated with the swinging of many
machines in one part of the system against
machines in other parts. In the European case,
three global modes (eigenvalues) are of particular
importance because when they lack damping the
whole system starts to oscillate. For example, load
flow situations including large power transits
between Spain, Portugal, Poland or some Balkan
States lead very often to a weakly damped power
system.

Figure 1: Changes of Dominant Eigenvalues under
1,546 Different Load Flow Situations
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Figure 1 shows 3 dominant eigenvalues in the
complex plain. These eigenvalues are interesting
because they show low frequencies, which identify
them as inter-area eigenvalues. The slant lines in
the figure characterize constant damping in the
range of 0% to 20%. For many different load flow
situations, these eigenvalues remain in the stable
region, but in some cases they shift to the low
damping region and can cause system instability.

2 PROPOSED APPROACH

The computation of the small signal stability is a
time consuming process for large networks
because it includes the load flow computation, the
linearization at the operating point, and the
eigenvalue computation. Thus, it is not suitable for
on-line applications.
An alternative method is to use a neural network
(NN) trained with off-line data for different load
flow conditions. By using NN, a fast computation
of the eigenvalues is possible, providing that the
network is properly designed. For on-line
applications, the NN predicts the dominant
eigenvalues based on the current operating
conditions.
The off-line data can be generated by simulating
various load flow situations using a model of the
UCTE/CENTREL power system. Hereby, the
generation of net groups in the power system is
changed to create diverse load flows between the
different net groups.
Each new load flow situation in the network
provides a new pattern for NN training and the
basic challenge is to simulate load flow cases that
are highly correlated with the system stability.
Another advantage of the NN is that it can be
properly trained with few input features. This is
also important considering that due to increasing
competition utilities may not share essential
information. Only very few features are commonly
available such as the transmitted power or the
generation of complete net groups. Information
about single generators or transmission lines is
usually not available.
Once it is trained, the NN can predict the
eigenvalues within milliseconds. However, the key
issue is to find the best input features that describe
the system under study. These input features have
to be measurable and need to contain as much
information as possible about the small-signal
stability.

3 PRE-SELECTION OF NN INPUT FEATURES

The principal applicability of NN for stability
prediction has been proven in a previous work [4].
The study is for the large-scale dynamic model of
the UCTE/CENTREL power system and Figure 2
shows the accuracy of the three inter-area
eigenvalues for different power flow scenarios by
using the NN.
The entire data for the UCTE/CENTREL system
include features for power equipment such as the
transmission lines, transformers, generators, and
loads. Hence, there is a large number of features in
such an extensive power system. The size of this
feature set creates the bottleneck problem for NN
training. Therefore, feature extraction or selection
techniques are indispensable for NN based small-
signal stability assessment.
First, a pre-selection is performed by engineering
judgment, whereby only the available and
measurable features are used. After pre-selection,
the size of these feature sets can be reduced using a
reduction technique.
In this study, the selected features are:

• Total generated real power in each net
group/utility

• Total generated reactive power in each net
group/utility

• Real power transmitted between neighboring
net group/utility

• Reactive power transmitted between
neighboring net group/utility

Figure 2: Testing Results of the NN trained with
Real Transmission Power Features

1%

10%

3% 2%



The power flow between two neighbored net
groups is the sum of power over all transmission
lines between them. Voltages are not used in this
study because the load flow calculation is based on
PV generator nodes that provide a constant voltage
level network independently from the current load
flow situation.
The total number of all pre-selected features is
211, which is extensive for NN training. Figure 2
shows previous results for NN when trained with
real transmission power as selected feature [4]. The
eigenvalues marked with crosses are the ones used
as targets. The circles are the NN outputs. The
targets and the NN outputs are connected by lines.
The results are very accurate but further reduction
can provide improvement in terms of NN training,
which is the focus of this paper.

4 FEATURE SELECTION AND EXTRACTION

The process of finding features that meet given
constraints out of a large group of features is called
feature reduction. In literature one can find many
different concepts for feature reduction. These
concepts can be divided into feature selection and
feature extraction techniques. Figure 3 illustrates
the basic idea.

Figure 3:  Basic Idea of Feature Selection (a) and
Feature Extraction (b)

By feature selection methods, only independent
features that provide quality information about the
system will be selected. The physical meaning of
the features are not changed in any way.
The feature extraction methods work in a different
way. Hereby, the features are projected onto a set
of reduced order feature space by a transformation
function. This transformation changes the physical
meaning of the features. The transformation
function is an analytical function and the challenge
is to find the best function for the given feature set.
Another methods for feature extraction include the
encoder technique and the principle component
analysis (PCA). These methods are explored in this
paper for the small-signal stability of power

systems. In addition, the paper describes the use of
a cluster algorithm for feature selection.
The neural networks used in this study are
designed as multilayer feedforward networks with
one hidden layer. The number of inputs depends on
the number of used features. The number of
outputs is 6 for the real and imaginary parts of 3
dominant eigenvalues. The networks are trained by
the backpropagation algorithm.
During the NN training, the error function
decreases but could be trapped in a local minimum.
To improve the training, the error is observed and
the weights are perturbed randomly when the error
decreases below a defined rate.
Another tendency of neural networks behavior is
memorization. This is an over fitting of training
data [5]. Usually, the training error is very small in
this case, but the error for the testing patterns is
much larger. To prevent a NN from memorizing
the training data, the training patterns are shuffled
after several iterations. The accuracy of the NN
during testing is evaluated, and the training process
is stopped when the testing error starts to
substantially increase.

4.1 Encoder Network

This section presents the results of feature
extraction using an encoder network applied to a
pre-selected feature set. The encoder NN is
designed to replicate its input as shown in Figure 4.

Figure 4:  Neural Network as Encoder

The original features are presented to the NN
input, passed through a hidden layer and replicated
at the output layer. Hence, the number of neurons
in the input layer is identical to the number of
neurons in the output layer.
For this architecture, the output of the hidden layer
neurons can be expanded to the high order input
space. Since the hidden layer has a smaller number
of neurons than the input layer, the hidden layer
represents the feature reduction space.
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Figure 5:  Average Encoder Error for Training (Top)
and Testing (Bottom)

Figure 6:  Testing Results of the NN after Feature
Extraction by a NN Encoder

The NN encoder designed in this study has 211
features (inputs). The hidden layer includes 53
neurons, which reduces the feature vector by 75%.
The number of hidden neurons is obtained from
experience with NN training. If the number is
smaller than 53, the encoder error will increase
extremely and the reduced feature set cannot be
used for eigenvalue prediction.
Figure 5 shows the average errors of the NN
training and testing, respectively. The average
error is computed by equation (1), whereby i
represents the feature number and p the number of
patterns.
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After the feature extraction process, a different NN
was trained by the new reduced feature vector to
predict the stability of the power system. The
testing results of this NN are shown in Figure 6.

4.2 Principle Component Analysis

The principle component analysis, also known as
Karhunen-Loeve expansion, is a linear feature
extraction technique [6].
Let F be a matrix of dimension np× , whereby n
is the number of the original feature vectors and p
is the number of patterns.
   [ ]nf,,f,fF ...21=   (2)       [ ]piiii fff ,...,, 21

T =f   (3)
The feature matrix is standardized. In other words,
the mean is subtracted from the feature vectors and
then the result is divided by the sample standard
deviation.
Thus, the correlation matrix C of the feature matrix
F can be written as

FFC ⋅= T (4)
The eigenvalues of C are determined by solving
the following equation

0)(det =⋅− IC λ (5)
and the eigenvectors, which form an orthogonal
principal coordinate system, are given by

niλ iii ,...,1=⋅=⋅ vvC (6)

Figure 7:  Testing Results of the NN after Feature
Extraction by PCA

However, not all principal components must be
taken into account, but only those corresponding to
the largest m eigenvalues. This is evident
considering the fact that the eigenvalues are the
variances of the principal components. Therefore,
small eigenvalues can be neglected and the
remaining percentage of total variation in the data
set is computed according to [7] as follows
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The user can determine the reduction level
according to equation (7). However, for
comparison purposes, we reduced the feature set to
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53, which is results in a percentage of total
variation larger 99.9999%.
Finally, the projection of the original data set onto
the new space leads to m extracted features given
by

miii ,...,1=⋅= vFα (8)
The stability NN was trained by using the 53
features and the results are given in Figure 7.

4.3 Selection by Clustering

Another way of reducing the dimension of a
feature set is to eliminate redundant features. The
redundancy can be identified by a cluster
algorithm. Hereby, the entire set of features is
divided into groups called clusters. A cluster
consists of features that are similar statistically.
Once the set is divided into clusters, one feature
from every cluster can be used as a NN input.
Because of the similarity between the features
within a cluster, one of them can be selected and
the others can be treated as redundant information.

Figure 8:  Testing Results of the NN after Feature
Selection by Clustering

However, the first step of the clustering technique
is to compute the distances between the feature
vectors, which can be the Euclidean distance. The
Euclidean distance dist between two given feature
vectors if  and jf  is defined as

T2 )()(),( jijijidist ffffff −⋅−= (9)

The features can then be clustered basing on the
largest distance between any two clusters. If
feature vector if  is the i-th object in cluster r and

jf  is the j-th object in cluster s, the distance d
between cluster r and s needs to be maximized:

)),(max(),( jidistsrd ff=            (10)

This algorithm is also known as furthest neighbor
algorithm and complete linkage, respectively.
Once the process of clustering is finished, the
second step is evaluated. Hereby, one feature from
each group is selected to form the new feature set.
The selection was performed by using the maximal
correlation between features and targets.
Figure 8 shows the testing results after the NN is
trained using the selected feature set. In this case,
the data set was clustered into 53 clusters to reach
a reduction by 75%.

4.4 Comparison of the Results

For comparison purposes, an error function needs
to be defined. In this study, the error λE  for a
given eigenvalue ωσλ j+=  determines the
normalized distance between targets and outputs
for one pattern. It is defined by the following
equation:
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2

target
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targetoutput
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targetoutput )()(
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λ

+

−+−
=E         (11)

This error can be computed for all testing patterns.
Table 1 shows the mean and the standard deviation
for 3 eigenvalues and all patterns.

Mean Error Standard Deviation
Encoder 0.0633 % 0.1646 %
PCA 0.0432 % 0.1011 %
Cluster 0.0920 % 0.1727 %

Table 1: Comparison of the Applied Techniques using
Mean Error and Standard Deviation of the
Error Function defined by Equation (11)

Table 1 allows to compare the different techniques,
but the main criterion for the stability assessment is
the prediction of the damping coefficient.
Therefore, a second error function ξE  for the
damping coefficient can be defined as follows by
equation (12) and (13):

target

targetoutput

ξ
ξξ

ξ

−
=E       (12)         

22 ωσ
σξ
+

−=      (13)

Table 2 shows the mean and the standard deviation
for 3 eigenvalues and all patterns using an error
function regards the damping coefficient defined
by equation (12).
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Mean Error Standard Deviation
Encoder 0.65 % 1.82 %
PCA 0.67 % 4.50 %
Cluster 1.94 % 8. 27 %

Table 2: Comparison of the Applied Techniques using
Mean Error and Standard Deviation of the
Error Function defined by Equation (12)

Another type of comparison is the time
performance. While the PCA method is very fast,
the use of an encoder requires much time
depending on the total number of features.
Table 3 provides time performance information for
the different techniques.

Reduction Time
Encoder 5 h
PCA 2 sec
Cluster < 5 min

Table 3: Time Performance Table for the Different
Applied Reduction Techniques

5 CONCLUSIONS

The paper discussed different feature extraction
and selection techniques for small-signal stability
assessment. After application of these techniques, a
NN was trained with the reduced data sets. The
results are very promising. The eigenvalues are
approximated with good accuracy and the stability
of the system can be accurately predicted.
Although the presented techniques show good
results, each has its own merits and drawbacks.
The disadvantage of the encoder technique is the
time necessary for training. Due to the large
number of inputs and targets, the NN structure can
be extensive and the training time could be
excessive.
In contrast to the encoder, the extraction by PCA is
not only highly accurate but also fast. In both
methods, the physical meaning of the new patterns
is lost. The clustering technique removes
redundant features. The introduced cluster solution
is accurate and applicable. One drawback of this
method results from the fact, that the features are
evaluated as single objects. Therefore, it is possible
that the n best features selected in this way are not
necessarily the best n features for characterizing
the whole system.
However, the PCA method and the introduced
cluster technique are not only highly accurate but

also fast and applicable. Therefore, future research
should focus mostly on these two methods.
The impacts of a changing network topology on
the NN results were not investigated in this paper.
Thus, further studies will take this problem into
account.
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