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Abstract – Knowledge of the dynamic security border can 
provide an operator with valuable information on how to safely 
steer the power system away from vulnerable operating regions. 
The large set of non-linear differential equations that describe 
modern large-scale power systems makes it difficult to 
determine the security border either analytically or numerically 
in real time. As an alternative, neural networks trained off line 
on emulator data can provide a commensurate representation of 
the system transfer function, while significantly decreasing 
evaluation time.  Using neural network inversion, sets of input 
points corresponding to a fixed output can be evaluated quickly.  
Different inversion procedures and their properties are 
reviewed here. We also review various metrics used for 
determining whether sufficient coverage of the border is 
achieved. Finally, we illustrate the use of border identification 
for preventive control when feature selection is initially 
performed to reduce the dimensionality of the input space.    

I. INTRODUCTION 

Border identification is a valuable visualization and 
computational tool for dynamic power system assessment. 
Knowledge of the security border allows the system operator 
to steer the system away from vulnerable states.  However, 
for large-scale complex power systems, the security boundary 
cannot be computed analytically. Instead, the border has to be 
computed in an approximate fashion by identifying points on 
the border and interpolating between them [1,2].  

This inversion procedure can be computationally intensive 
if the inversion is performed using complex simulation 
software. However, the use of neural networks (NNs) [1-8] 
can greatly increase the convergence speed of the inversion 
algorithms. The inversion of the NN can be performed by a 
plethora of techniques (see e.g. [9-16]).  

In some cases, the points on the border need to be 
distributed uniformly and/or close to an operating state. 
Evolutionary algorithms are ideally suited for such 
constrained cases of NN inversion. Reed and Marks [1] 
propose such an evolutionary algorithm, where the constraint 
is maximal spread of the points on a border. Kassabalidis et 
al. [2] propose an enhanced particle swarm optimization 
(PSO) [17] algorithm. In this algorithm, the effects of 
imposing varying constraints on the distribution of the points 
are investigated. Jensen et al. [3] propose another constrained 
inversion approach based on the nearest inversion algorithm 
by Reed and Marks [14] and the alternating projections 
algorithm [18]. Jensen’s algorithm seeks to locate the point 
on the border that is closest to the operating state and satisfies 
the power flow constraints. 

In many cases the dimensionality of the input space is very 
high, thereby contributing to the computational intensity of 
the problem. One remedy is feature selection [2, 19 and 20]. 
Feature selection uses only the most important features of the 
input and the contour is identified in the reduced-
dimensionality selected-feature space. 

II. BORDER IDENTIFICATION FOR POWER SYSTEM 
PREVENTIVE CONTROL  

In security or vulnerability assessment of power systems, 
knowledge of the distance of the current operating point to 
the security or vulnerability border is required. Such 
information gives the operator valuable information on how 
to steer the system away from vulnerable states and into more 
secure operating regions. 

As an example, consider the case when a neural network 
assesses the security index of the power system.  A neural 
network output value exceeding 0.5 indicates a secure state 
while a reading below 0.5 denotes vulnerability.  The 
boundary separating secure from vulnerable states, as 
illustrated in Figure 1, is the boundary specified by the locus 
of points for which the security index is 0.5. All the 
coordinates on this border, when supplied as the system 
input, produce outputs of 0.5.  Suppose, for a given input 
operating point 0x� , the security index is 0.6. We desire to 
know the security margin for this operating point defined as 
the distance of the current operating point to the border.  This 
is illustrated in Fig.1. 
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Fig.1. Distance between of the power system operating state and the 

security border 
 
The border in Fig.1 is a closed loop. Such is the case when 

the function to be inverted is continuous everywhere. When 
the function is not continuous, the contour need not be closed. 
An example of this is shown in Fig.2. Here the distance of the 
operating state from the security border may not be a good 
security margin indicator. If the border is a closed loop, the 
distance of the operating state from the security border is 
always smaller than the distance of the operating point from a 
vulnerable region. However, if the border is not a closed 
loop, as shown in Fig.2, the operating state can be much 
closer to a vulnerable region than to the security border. 
Thus, the distance from the border is no longer a good 
security margin indicator.  
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Fig.2. Example where contour-based preventive control provides false 

security indicators. 
 

Consider training a layered perceptron with data generated 
from a computationally intensive emulator.  Ideally, the 
neural network will have a nearly identical input-output 
relationship as the emulator.  The use of smooth sigmoidal 
nonlinearities, however, transforms discontinuities of the 
emulations into steep slopes in the neural network.  The 
system transfer function is smoothed so that all 
discontinuities are eliminated [16]. All borders are therefore 
closed loops. If the result of this smoothing is still a viable 
approximation, where very little accuracy is lost, border 
identification can be used for preventive control. 

III. BORDER IDENTIFICATION AS AN INVERSION PROBLEM 

Power systems security assessment can be modeled by a 
many-to-one mapping )(xfy �

= , where y is a security index 
such as the critical clearing time, the energy function, the 
second kick or load shedding and x�  is the input vector. 
Inversion, in such cases, is typically a surface or contour    

},)(:{ cxfxS == ��  (1)
where S is the set of surface points, x�  is the input space 
coordinates, and c is the value of the contour.  

When f is simple, the equation describing the contour can 
be derived relatively easily. However, when f is described by 
a complex system of non-linear differential equations, a 
number of optimization methods must be used to locate 
points on the border. Assuming enough points exist, the 
border can be reconstructed from these points by linear 
interpolation.  

When the system transfer function is modeled by complex 
and computationally intensive simulation software, 
convergence can be slow. As a remedy, NNs can be used to 
greatly decrease this computational overhead. The inversion 
of the NN can be performed via a plethora of methods. The 
concept of iterative NN inversion was first discussed by 
Williams [9] and again later by Linden and Kindermann [10]. 
Hwang et al. [11] and Hoskins et al. [12] discuss applications 
of the iterative inversion algorithm. Lu et al. [15] discuss an 
interesting application of linear and non-linear programming 
for neural network inversion.  

 

IV. CONSTRAINED BORDER IDENTIFICATION   

The methods discussed in Section III can be applied to 
finding points anywhere on a border, without any distribution 
constraints. However, without such constraints, points tend to 
gather in areas where the border is more easily identified 
while populating other areas very sparsely.  An example of 
such a two-dimensional surface is shown in Fig. 3, where 
most of the border points clamp in a portion of the contour. 
This surface, shown in Fig.3, 4 and 5, is an example plot 
of 2|)(| cxf −� . The desired border of cxf =)(

�

 thus 
coincides with the surface’s minimum.     

The goal of border tracking is to find points on the border 
so that areas of interest are covered in a uniform manner with 
sufficient density to allow accurate border reconstruction via 
interpolation. The area of interest can be either the entire 
contour or a portion of the border closest to the current 
operating state. In order to achieve uniform distribution of the 
points, constraints must be imposed on their distribution.  

 

 
Fig.3. Placing points on the contour without constraints on their 

distribution. In this case, points tend to gather in some areas, while leaving 
gaps in others.  

 
Reed and Marks [1] propose an evolutionary multi-agent 

search where the goal is to distribute points evenly on the 
entire border. This is performed by penalizing the proximity 
to any other contour point by adding a penalty factor to the 
fitness function. Each agent in the algorithm corresponds to a 
different point on the contour. Therefore, the algorithm finds 
points on the entire border in a parallel manner.  

Jensen et. al. [3] propose an algorithm based on the nearest 
inversion algorithm by Reed and Marks [14] and alternating 
projections. The algorithm attempts to find the point on the 
border which is closest to the operating state and satisfies the 
power flow equations. The procedure begins by projecting a 
randomly generated search point onto the security boundary 
and then performs a constrained gradient descent on the 
security boundary to locate the point closest to the current 
operating state. Electric power flow constraints are enforced 
by iterating with an external power flow simulation program. 

Border 
Border 
points 



Kassabalidis et al. [2] propose a border identification 
method based on PSO. The algorithm locates points either on 
the entire border or on the section of the border close to the 
operating state. The points are located by imposing 
constraints on the fitness function of PSO. More specifically, 
proximity to neighboring points is penalized, while proximity 
to the operating state is rewarded. The algorithm is 
sequential; hence convergence is fast for the first few points.  
Increased accuracy is achieved once more points are located. 

In Fig.4 and Fig.5, an example of implementing these two 
constraints using the enhanced PSO method is illustrated [2]. 
In Fig. 4 we see the results of penalizing proximity to any 
other point. The points are distributed in an almost uniform 
manner. In Fig.5 results of penalizing for proximity to any 
other point and rewarding closeness to the operating state are 
seen. We observe points only on the segment of the contour 
close to the operating state. These points are distributed in a 
relatively uniform manner.  

 
Fig.4. Example of contour identification where points are distributed 

relatively uniformly throughout the entire contour 
 

 
Fig.5. Example of contour identification where points are distributed 

relatively uniformly on the contour and close to the operating state. 
 

In Table I, we summarize the main features of the above 
algorithms for finding border points.   

 
 
 
 

 

TABLE I. FEATURES OF BORDER IDENTIFICATION METHODS 

 Evolutionary [1] Enhanced PSO [2]
Nearest inversion 

& alternating 
projections [3] 

Placement order Parallel Sequential Sequential 

Placement 
options 

Uniformly on 
entire border 

Uniformly on entire 
border. Uniformly 
close to operating 

state 

Closest to operating 
state 

Convergence 
Speed 

Attempts to cover 
the entire border. 

Suffers from curse 
of dimensionality.  

Can concentrate 
close to current 

operating state, thus 
alleviating curse of 

dimensionality.  

Seeks to find a 
single point closest 
to operating state, 
thus alleviating 

curse of 
dimensionality 

Other 
comments 

Optimizes for all 
the points in a 

parallel manner, 
but might take 

longer to converge 

Sequential with fast 
convergence per 
point. Thus, first 
few points can be 

used quickly while 
accuracy can be 
enhanced when 
more points are 

located 

Requires 
alternating 

projections. This 
increases 

computational 
times.  

  

V. SUFFICIENT COVERAGE OF THE BORDER   

A number of measures can be applied to determine the 
sufficiency of the generated points on the border. 
Kassabalidis et al. [2] propose the following measures. 

a) Difference between the security index of the points and 
the desired contour value. 

b) Difference between the security index of the midpoints 
and the desired contour value.  

c) Distance of each point to its closest neighbor. 
d) Distance of each point to all other points. 
The mean of the first metric is used to determine how 

accurately the points are placed on the contour. However, 
these points may not suffice to represent the contour with 
interpolation accuracy.  

To determine if enough points are point on the contour, a 
technique based on the midpoints between neighboring 
contour points is proposed.  The midpoint is defined as the 
point specified by linear interpolation between a pair of 
closest neighbors. Each point on the contour has one closest 
neighbor, thus the total number of midpoints is equal to the 
number of points. Fig.6 shows the midpoint of two points A 
and B on the contour, where no other points exist on the 
contour segment AB. The proximity of the midpoint to the 
contour is an indicator of whether points A and B are enough 
to approximate the border segment AB via interpolation. The 
proximity of the midpoint to the contour can be determined 
either in the input or the output space. However, as shown in 
Fig.6, the midpoint-to-contour distance is unknown in the 
input space since the contour point closest to the midpoint is 
unknown. Thus, the distance is calculated in the output space. 
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Fig.6. Point B is the closest neighbor of A. Their midpoint is calculated 

via linear interpolation. In the input space, the distance of the midpoint to the 
contour is unknown, since the contour segment between A and B is 

unknown. Thus, we calculate the distance in the output space. The proximity 
of the midpoint to the contour is an indicator of whether points A and B are 

sufficiently close to approximate the segment AB via interpolation 
 
Using the mean and variance of the third metric, 

conclusions can be derived on the distribution of the points. 
The mean shows us how sparsely the points are distributed. 
The higher the mean, the larger the size of the covered area. 
The variance shows us the degree of uniformity of the 
distribution.  

Finally, the fourth metric shows us the size of the covered 
area. A shown in Fig.7, when the points are clamped in a 
small region of the contour, the fourth metric will have a 
smaller mean compared to when the points are spread over a 
larger area.  

Small area covered Large area covered

a) b)  
Fig.7. In a) the mean distance of each point to all other points is smaller than 

in b).  This means that the area covered in a) is smaller than in b) 

VI. FEATURE SELECTION FOR PREVENTIVE CONTROL 

Feature selection is an approach for dealing with extremely 
highly-dimensional systems [2, 19, 20]. This technique 
selects a predetermined number of most important features to 
reduce the space dimensionality. Once feature selection is 
performed, the border can be identified on the reduced-
dimensionality input space. In power system preventive 
control, the intention of identifying the border is to calculate 
the distance, in input space, from the current operating point 
to the contour. The result is a metric useful for  driving the 
system away from the border. The following steps summarize 
the procedure proposed.  

1) From the coordinates of the current operating state, 
choose those that correspond to the selected features. 

2) Identify the contour close to the operating state in the 
selected feature space. 

3) Use the distances in the feature-space as metrics for 
preventive control. Since the selected features are the most 
important of the whole feature set, these distances represent 
the most important rules to prevent the system from getting 
close to the border. This procedure is depicted schematically 
in Fig.8. 
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Fig.8. Block diagram of preventive control based on contour identification 
and feature selection 

VII. CONCLUSIONS 

Border identification is a critical process in power system 
security assessment. When the border cannot be determined 
analytically or numerically in real time, a neural network can 
be trained to generate a mapping essentially equivalent to the 
analytic or numerical solution. The neural network generates 
this mapping quickly and can therefore serve as an invaluable 
tool for the iterative inversion process. For border 
identification, iterative inversion algorithms must impose 
constraints on the distribution of the border points, so that 
coverage is sufficient.   
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