РАЗВИТИЕ АЛГОРИТМОВ ОЦЕНИВАНИЯ СОСТОЯНИЯ ЭЭС ПО НЕКВАДРАТИЧНЫМ КРИТЕРИЯМ

М.В. Хохлов

Формирование текущей модели ЭЭС, необходимой для решения аналитических задач оперативного управления, осуществляется на основании данных телеметрических измерений (ТИ) и предусматривает решение задачи оценивания состояния (ОС) ЭЭС. В основу оценивания состояния положена классическая процедура наименьших квадратов, заключающаяся в минимизации суммы квадратов рассогласования данных измерений и результатов оценивания [1]. Удобные для использования методов минимизации вычислительные свойства квадратичной функции позволили создать эффективные алгоритмы ОС ЭЭС, обеспечивающие быструю и надежную сходимость вычислительного процесса [2,3].

Меньшее развитие получили методы ОС ЭЭС, основанные на неквадратичных критериях. Предложенные в [4,5] неквадратичные оценки менее подвержены влиянию грубых ошибок ТИ, чем оценка наименьших квадратов, которая, как известно, в условиях плохих исходных данных является ненадежной. Основная доля работ в этом направлении приходится на 70-е и начало 80-х гг. прошлого века. Недостаточно хорошая сходимость вычислительного процесса привела вскоре к отказу от использования неквадратичных критериев и фокусированию внимания исследователей на повышении надежности квадратичной оценки введением в задачу дополнительных процедур по обнаружению и устранению неверных ТИ [6].

Настоящий интерес к неквадратичным критериям обусловлен возникающими сложностями применения методов обнаружения неверных ТИ в условиях наметившейся тенденции к увеличению числа ТИ, размерности расчетных схем и требований к быстродействию решения задачи ОС ЭЭС. Использование неквадратичных критериев направлено не на поиск неверных ТИ, а скорее, на подавление их влияния в процессе минимизации обычных ошибок, предохраняя, тем самым, оценку от смещения, обусловленного наличием в ТИ грубых ошибок. Это достигается заменой квадратичной функции на менее быстро растущие функции невязок измерений:

$$J(x) = \sum \rho(r_i), \qquad (1)$$

приводящей к системе нелинейных уравнений:

$$\frac{\partial J}{\partial x} = -H^T R^{-\frac{1}{2}} \psi(r) = 0, \qquad (2)$$

где x – искомый вектор состояния энергосистемы, однозначно определяющий все параметры режима, $r_i = (\bar{v}_i - v_i(x))/\sigma_i$ – взвешенная невязка *i*-го измерения, определяемая как разность между измеренным значением \bar{v}_i и оценкой $v_i(x)$, $R = diag(\sigma_i^2)$ – ковариационная матрица ошибок измерений, ρ – симметричная функция, первая производная которой $\psi = \rho'$ должна быть ограничена, $H = dv/\partial x$.

Для решения этой задачи в [4] было предложено использовать метод Ньютона-Рафсона, хорошо зарекомендовавший себя при поиске квадратичных оценок. Однако увеличение нелинейности решаемых уравнений (2), по сравнению с методом наименьших квадратов, привело к проблемам в сходимости итерационного процесса Ньютона. В [2] отмечается, что основной недостаток использования неквадратичных критериев – это ухудшение сходимости вплоть до расходимости вычислительного процесса при наличии более одного-двух неверных измерений и неудачном начальном приближении.

Одной из причин такого поведения является стремление исследователей использовать невыпуклые функции невязок, более эффективные в подавлении грубых ошибок, но порождающие множественные локальные минимумы целевой функции. В этом плане предпочтительнее выпуклая функция Хьюбера

$$\rho(r_i) = \begin{cases} r_i^2/2 & \text{при} |r_i| \le a, \\ a|r_i| - a^2/2 & \text{при} |r_i| > a, \end{cases}$$
(3)

первая производная которой ограничена

$$\psi(r_i) = \begin{cases} r_i & \text{при} |r_i| \le a, \\ \text{sgn}(r_i) \cdot a & \text{при} |r_i| > a, \end{cases}$$
(4)

где *a* > 0.

Второй причиной является несовершенство используемых алгоритмов, реализующих итерационную схему метода Ньютона, не обеспечивающих надежную и быструю сходимость к решению. Поэтому возникает необходимость в поиске новых методов решения задачи (1).

В рассматриваемом ниже подходе используется идея о представлении неквадратичной функции на каждом шаге итераций квадратичной функцией с соответствующим изменением весов слагаемых, что приводит к алгоритму наименьших квадратов с модифицированными весами [7]. Показано, что этот метод обладает лучшими вычислительными характеристиками, чем предложенный в [4]. Во втором подходе решение исходной задачи (1) сводится к последовательности решений задач для линеаризованной модели ЭЭС. Помимо хорошей сходимости такая постановка допускает эффективное распараллеливание вычислений на нейронной сети [8].

Алгоритм с модифицированными весами. Наилучшей квадратичной функцией из всех возможных в качестве сравнительно похожих на неквадратичную является функция вида [7]

$$J(x) = \frac{1}{2} \sum_{i=1}^{m} w_{i} r_{i}^{2} + const,$$

где веса, зависящие от невязок, определяются по формуле

$$w_i = \psi(r_i)/r_i . \tag{5}$$

Тогда систему (2) можно записать в эквивалентном виде

$$H^{T}R^{-\frac{1}{2}}Wr = 0, (6)$$

где $W = diag(w_i)$.

В соответствии с методом Ньютона-Рафсона решение (6) определяется в ходе итерационного процесса

$$x_{k+1} = x_k + \Delta x_{k+1}, \qquad k = 0, 1, 2...,$$
(7)

где поправки Δx к вектору состояния находятся из системы линейных уравнений:

$$\left(H_{k}^{T}R^{-1}W_{k}H_{k}\right)\Delta x_{k+1} = H_{k}^{T}R^{-\frac{1}{2}}W_{k}r_{k}.$$
(8)

Уравнение (8) получено линеаризацией (6) в точке $x = x_k$ полагая, что матрица *W* в процессе линеаризации постоянна и не зависит от *x*. Покажем, что такое допущение

Рис.1 Уменьшение области сходимости метода Ньютона-Рафсона для функции $w \cdot r(x) = 0$.

значительно улучшает сходимость процесса. Для этого воспользуемся геометрической интерпретацией метода Ньютона-Рафсона, применяемой в [1] для обоснования аналогичного допущения относительно матрицы производных H, и рассмотрим уравнение $w \cdot r(x) = 0$.

На рис.1 показан типичный график функции невязки r(x), весовой функции Хьюбера $w = \psi(r(x))/r(x)$ и функции $w \cdot r(x)$. Как видно, нелинейность уравнения, обусловленная неквадратичной функцией, приводит к ограничению области сходимости метода Ньютона-Рафсона значениями x_1 и x_2 . Очевидно, увеличением значения точки перегиба *а* можно расширить область сходимости. Однако это ведет к потере робастных свойств получаемых оценок. Между тем, функция r(x), имеющая то же решение x^* , подобных ограничений не имеет. Умножение r(x) на величину *w*, полагаемой посто-

янной в процессе линеаризации, не меняет характера функции, обеспечивая, тем самым, такую же область сходимости, что и в методе наименьших квадратов.

Следовательно, алгоритм (7)-(8) можно рассматривать как реализацию базового алгоритма поиска оценок наименьших квадратов с весами w_i , пересчитываемыми на каждой итерации. Переход от квадратичного критерия к неквадратичному не приводит к сколь-либо значительным изменениям в существующих программах ОС ЭЭС. Требуется лишь дополнительный расчет весовой матрицы W в соответствии с выбранным критерием (табл.1).

тт

Таблица 1

Функция		$\rho(r)$	$\frac{\psi(r) = \rho'(r)}{\psi(r)}$	$w(r) = \psi(r)/r$
Выпуклые	Хьюбера	$\begin{cases} \frac{r^2}{2}, & r \le a \\ r \cdot a - a^2/2, & r > a \end{cases}$	$\begin{cases} r, & r \le a \\ a \operatorname{sgn}(r), & r > a \end{cases}$	$\begin{cases} 1, & r \le a \\ a/r, & r > a \end{cases}$
	Сигмоидная	$a^2 \cdot \log(\cosh(r/a))$	$a \cdot \tanh(r/a)$	$\frac{a}{r} \tanh(r/a)$
Невыпуклые	[4]	$\begin{cases} \frac{r^2}{2}, & r \le a \\ 2a^{3/2}\sqrt{ r } - \frac{3}{2}a^2, & r > a \end{cases}$	$\begin{cases} r, & r \le a \\ a^{3/2} \frac{\operatorname{sgn}(r)}{\sqrt{ r }}, & r > a \end{cases}$	$\begin{cases} 1, & r \le a \\ (a/r)^{3/2}, & r > a \end{cases}$
	Урезанное среднее	$\begin{cases} \frac{r^2}{2}, & r \le a \\ \frac{a^2}{2}, & r > a \end{cases}$	$\begin{cases} r, & r \le a \\ 0, & r > a \end{cases}$	$\begin{cases} 1, & r \le a \\ 0, & r > a \end{cases}$

Расчеты показали, что алгоритм сходится и при использовании невыпуклых функций невязок, при условии, что для r > 0 функция $\rho(r)$ возрастает. Такому условию отвечает функция, предложенная в [4]. Естественно, при малых значениях *а* существует вероятность получения локального недостоверного решения.

Использования для ОС ЭЭС более эффективных функций типа «урезанное среднее» следует избегать. При неудачном начальном приближении, когда невязки многих ТИ велики, $|r_i| > a$, назначение нулевого веса $w_i = 0$ эквивалентно полному удалению ТИ из вектора исходных данных, что в условиях невысокой локальной избыточности измерений зачастую приводит к сингулярной матрице $A = H^T R^{-1}WH$.

В случае удачного подавления влияния плохих ТИ их остаточные невязки f_i резко выделяются на фоне остальных. Неверным измерением можно считать то, для которого выполняется неравенство $f_i > d_i$, где d_i – некий предварительно выбранный порог.

Приведем сравнение алгоритма с предложенными ранее. Перепишем (8), учитывая (5), в виде (индекс номера итерации *k* опущен)

$$\Delta x = A^{-1} H^T R^{-1} \psi(r), \qquad (9)$$

где $A = H^T R^{-1}WH$. Если \hat{x} – решение уравнения (2), то оно не зависит от A. Матрица A задает направление спуска и определяет характер сходимости к оценке \hat{x} . Следовательно, можно использовать любую другую невырожденную матрицу A', обеспечивающую сходимость итерационного процесса.

В [4] используется $A' = H^T R^{-1} GH$, где компоненты диагональной матрицы G в принятых обозначениях $g_i = \frac{\psi^2(r_i)}{2\rho(r_i)}$. Отличие A' от A незначительное. Функция g(r) при |r| > a убывает несколько быстрее, чем w(r). Между тем, сходимость вычислительного процесса резко ухудшается. Причиной служит применение метода Ньютона-Рафсона к уравнению (2), представленному для линеаризации в более нелинейной фор-

ме, чем (6).

На рис. 2 показаны графики функций f(x) и f'(x), подвергаемые линеаризации в

методе, описанном выше, и в методе, изложенном в [4], соответственно, при нахождении оценки Хьюбера. Тогда как в первом случае итерационный процесс Ньютона-Рафсона уверенно сходится, применение алгоритма в [4] при том же начальном приближении дает расходящийся процесс. Это объясняет его высокую чувствительность к начальному приближению.

Как показали расчеты, нарушения сходимости не происходит, если в качестве g(r) использовать функцию, убывающую при |r| > a не быстрее, чем w(r). В пределе можно положить G = I, где I – единичная матрица. В таком случае матрица $A' = H^T R^{-1} H$ совпадает с используемой в методе наименьших квадратов. Получаемый алгоритм известен как *алгоритм с модифи*-

Рис.2. Геометрическая иллюстрация сходимости алгоритма (7)-(8) и расходимости алгоритма в [4].

цированными невязками [7]. Подобному названию он обязан тем, что в отличие от базового алгоритма наименьших квадратов при расчете поправки Δx вместо невязок *r* используются так называемые винзоризованные невязки $\psi(r)$. Этот алгоритм позволяет перейти к упрощенному методу Ньютона-Рафсона, в котором используется постоянная матрица *A'*. Выполнив на первой итерации ее треугольную факторизацию, на последующих итерациях при расчете Δx достаточно осуществлять лишь прямой ход Гаусса, сокращая, тем самым, объем требуемых вычислений.

Алгоритм с модифицированными невязками был предложен в дискуссии к [5] и рассматривался для оценивания состояния ЭЭС при раздельном решении уравнений для активной и реактивной мощностей в [9]. Следует заметить, однако, что замена $H^T R^{-1}WH$ на $H^T R^{-1}H$ приводит к большой погрешности в определении направления спуска к минимуму целевой функции (1). Причем тем большей, чем больше неверных измерений среди данных. Кроме того, как показано в [7], скорость убывания целевой функции ниже, чем в алгоритме с модифицированными весами.

Алгоритм, основанный на последовательной линеаризации. Нелинейность уравнения (2) обусловлена наличием двух нелинейных функций: зависимостью измеряемых величин от вектора состояния v(x) и функции невязки $\psi(r)$. Идея излагаемого ниже подхода заключается в организации вычислительного процесса, в котором обработка двух нелинейностей производится независимо друг от друга. Решение (1) сводится к построению последовательности векторов $\{x_k\}$, получаемых в результате оценки состояния линеаризованной модели ЭЭС.

Пусть зависимость v(x) линеаризуется в точке x_k разложением в ряд Тейлора:

$$\widetilde{v}(x) = v(x_k) + H(x - x_k).$$
⁽¹⁰⁾

Оценке состояния линеаризованной системы соответствует минимум функции

$$J'(x) = \sum \rho(\tilde{r}) \to \min, \qquad (11)$$

где невязка $\tilde{r} = R^{-\frac{1}{2}} (\bar{v} - \tilde{v}(x))$ линейно зависит от *x*. Решение задачи (11) принимается за новую точку линеаризации и процесс решения повторяется.

Преимущество такого подхода – значительно меньшее число итераций, необходимое для сходимости процесса, чем в предыдущем методе. Если при оперативных расчетах допускается пренебречь нелинейностью уравнений v(x), тогда алгоритм требует одной итерации. Однако сложность реализации одного шага итерации, связанной с поиском минимума (11), возрастает.

Для решения задачи (11) можно воспользоваться описанным алгоритмом с модифицированными весами, который для линейных систем дает гарантированную сходимость [7]. Как показали расчеты, увеличение объема вычислений на одну итерацию в этом случае не компенсируется сокращением числа итераций и по времени получения решения метод проигрывает.

В [8] был предложен другой путь решения проблемы. Целевую функцию (11) можно рассматривать как энергетическую функцию рекуррентной нейронной сети. Число нейронов первого слоя такой сети соответствует размерности вектора измерений *v*, второго слоя – размерности вектора состояния *x*. Количество связей между нейронами двух слоев определяется числом ненулевых элементов в матрице производных *H*.

После установки весов связей (рис.3), равных $\frac{1}{\sigma_i} \frac{\partial v_i}{\partial x_i}$, и подачи на нейроны первого

слоя смещений $r_i = \sigma_i^{-1}(v_i(x) - \bar{v}_i)$ нейронная сеть стремится к устойчивому состоянию, соответствующему минимуму энергетической функции. Полученный на выходе вектор Δx является основой для следующей линеаризации.

Отсутствие необходимости решения систем линейных уравнений, разгрузка центрального процессора за счет распараллеливания основного объема вычислений в нейронном сопроцессоре, малое число итераций метода линеаризации способны обес-

Рис.3. Реализация метода последовательной линеаризации с использованием нейронной сети.

печить высокое быстродействие решения задачи ОС ЭЭС.

Результаты экспериментов. Для иллюстрации сходимости описанных алгоритмов ниже приводятся результаты сопоставительных расчетов, выполненных для модельной и реальной ЭЭС.

Схема модельной ЭЭС представлена на рис.4. Вектор измеряемых параметров включает измерения перетоков активной мощности с одного конца каждой линии и измерения активной мощности узлов 1 и 2, $v = \{P_{12}, P_{13}, P_{32}, P_1, P_2\}$, а вектор искомых пе-

ременных состояния – фазовые углы напряжений в узлах 2 и 3, $x = \{\delta_2, \delta_3\}$. Модули напряжений всех узлов полагаются известными абсолютно точно и остаются неизменными во время расчета. Шум измерений моделируется добавлением к действительным значениям измеряемых параметров ошибки, распределенной по нормальному закону $\xi_i \rightarrow N(0, {\sigma_i}^2)$. В измерение мощности P_{32} введена большая ошибка, имитирующая сбой в телеизмерении. В качестве неквадратичной функции $\rho(r)$ использовалась функция Хьюбера (3) с точкой перегиба a=1,4.

Рис.4. Схема ЭЭС с расстановкой измерений.

На рис.5 изображены траектории сходимости процесса оценивания для четырех описанных алгоритмов. Обладая разным характером сходимости, они проводят к решению близкому к действительному $x^{\partial e i c c m} = \{-0.0216, -0.0218\}$. Для сравнения показано решение, получаемое минимизацией суммы квадратов невязок, которое под влиянием плохого ТИ оказывается смещенным и недостоверным.

Алгоритм последовательной линеаризации приводит к решению за две итерации, причем решение, достигнутое в результате первой итерации, практически соответствует искомому. Вычисления с модифицированными весами требуют семи приближений. Для этого алгоритма характерно замедление сходимости вблизи решения.

В алгоритме в работе [4] направление изменения *х* практически совпадает с направлением, определяемым в алгоритме с модифицированными весами, что связано с небольшим отличием в матрицах A' и A. Однако он дает «перелет», демонстрируя колебательную сходимость процесса, и требует 25 итераций. Наихудшую сходимость (83 итерации) показывает алгоритм с модифицированными невязками. Как видно, следствием замены A на $A' = H^T R^{-1} H$ являются большая погрешность в определении направления спуска и малый шаг приращения x («недолет»). Очевидно, что использование по-

Рис.5. Траектории изменения фазовых углов из исходного приближения $\delta_1=0, \ \delta_2=0.$

1 – алгоритм линеаризации; 2 – алгоритм с модифицированными весами (7)-(8);

3 – алгоритм в [4]; 4 – алгоритм с модифицированными невязками.

стоянной матрицы *A'* и/или разделение модели ЭЭС на активную и реактивную модели приведет к еще большему увеличению числа итераций.

Улучшить сходимость последних трех алгоритмов можно введением в вычислительный процесс параметра λ , определяющего длину шага вдоль направления спуска. Определение величины шага с целью исследования влияния λ на сходимость осуществлялось методом золотого сечения. В результате все три алгоритма сошлись к решению за три итерации (табл.2). Видно, что для алгоритма (7)-(8) введение шага необходимо для ускорения вблизи решения, тогда как для алгоритма в [4] ускорение достигается ограничением шага на первых итерациях. Сложности с выбором шага могут возникать в алгоритме с модифицированными невязками, в котором λ может достигать больших значений.

Таблица 2

	Применяемый алгоритм						
Ите- рация	(7)-(8)		[4]		с модифицированными невязками		
	λ_k	$\left\ x^{\operatorname{deŭcm}}-x_k\right\ $	λ_k	$\left\ x^{\partial e \check{u} c m} - x_k\right\ $	λ_k	$\left\ x^{\operatorname{deŭcm}}-x_k\right\ $	
0	-	0,0307	-	0,0307	-	0,0304	
1	0,98	0,0048	0,49	0,0052	44,10	0,0212	
2	2,67	0,0013	1,73	0,0012	14,01	0,0012	
3	1,97	0,0013	2,29	0,0012	1,01	0,012	

Сходимость метода Ньютона-Рафсона в различных алгоритмах с выбором шага для трехузловой ЭЭС

В качестве реального примера приведем результаты оценивания, полученные для одного из срезов ОИК Коми ЭЭС. Расчетная схема ЭЭС состоит из 24 узлов и 26 ветвей. Исходными данными для расчета служили 97 ТИ, включающих измерения активных и реактивных мощностей по линиям и в узлах, нулевые инъекции транзитных узлов и измерения узловых напряжений. По результатам оценивания состояния с использованием неквадратичной функции Хьюбера (3) выявлено 13 неверных ТИ, что составляет 12,4% от общего числа измерений. Заметим, что эти же измерения были забрако-

ваны в процессе идентификации с помощью одного из методов поиска неверных ТИ, основанного на анализе оценок ошибок измерений [10].

Анализируя результаты сходимости, представленные в табл.3 и на рис.6, можно сказать, что предложенные в данной работе алгоритмы, основанные на методе последовательной линеаризации и методе Ньютона-Рафсона с модификацией весов (7)-(8), обладают уверенной сходимостью несмотря на большое число неверных ТИ. Второй не-

Таблица З

	λ=	=1	λ=var	
Алгоритм	Кол-во итераций	$\sum ho({m k})$	Кол-во итераций	$\sum ho({f k})$
последовательной линеаризации	4	616,01	3	616,01
(7)-(8)	11	616,66	10	616,09
[4]	97	616,01	8	661,08
с модифицированными невязками	165	806,55	99	616,01

Сходимость алгоритмов при оценивании состояния 24-узловой ЭЭС

Рис.6. Характер сходимости невязок r_i к остаточным значениям при оценивании состояния 24-узловой ЭЭС. Остатки неверных измерений существенно выделяются на фоне остальных. а) алгоритм последовательной линеаризации; б) алгоритм с модифицированными весами (7)-(8); в) алгоритм в работе [4]; г) алгоритм с модифицированными невязками.

сколько хуже сходится вблизи решения. Метод, предложенный в [4], и его упрощенный вариант с модифицированными невязками демонстрируют плохую сходимость. Последний потребовал 165 итераций до выполнения заданной точности завершения вычислительного процесса, так и не достигнув минимума целевой функции.

Сходимость метода [4], сопоставимая со сходимостью метода с модифицированными весами, обеспечивается лишь при использовании адаптивного шага λ (табл.3). В этом случае число итераций сокращается с 97 до 8. Однако необходимость определения шага на каждой итерации процесса увеличивает общее время расчета, снижая, тем самым, его эффективность. Ускорение сходимости наблюдается и в методе с модифицированными невязками, но число итераций, необходимое для получения решения, все еще велико.

Приведенные примеры иллюстрируют способность неквадратичных критериев устранять влияние ошибок неверных измерений на результаты оценивания. Вместе с тем эта способность существенно зависит от имеющейся избыточности ТИ. Как и методы обнаружения плохих данных, основанные лишь на результатах текущего замера, они не справляются с грубой ошибкой в измерении, образующем критическую пару с другим, и в принципе не способны защитить от сбоя в критическом измерении. Кроме того, при наличии в ЭЭС измерений в положении разбалансировки, грубые ошибки в которых не проявляют себя в большой невязке r_i , необходимо предусмотреть меры по ограничению влияния положения таких измерений путем назначения весов слагаемым критерия (1) в соответствие с удаленностью ТИ в факторном пространстве [11].

Заключение

Разработанные в работе методы позволяют говорить о реабилитации неквадратичных критериев в задаче оценивания состояния ЭЭС. Алгоритмы обеспечивают существенно лучшие вычислительные характеристики, чем предложенные ранее: обладают более надежной сходимостью, менее критичны к начальному приближению и к количеству неверных измерений в исходных данных. Алгоритм с модифицированными весами легко реализуется на базе действующих программ ОС ЭЭС по квадратичному критерию. Применение метода последовательной линеаризации, обеспечивающего самую быструю сходимость, возможно при использовании эффективных методов решения линеаризованной подзадачи, например, с использованием параллельных нейросетевых алгоритмов.

ЛИТЕРАТУРА

1. Гамм А.З. Статистические методы оценивания состояния электроэнергетических систем. – М.: Наука, 1976. – 220 с.

2. **Оценивание состояния** в электроэнергетике / А.З. Гамм, Л.Н. Герасимов, И.Н. Колосок и др. – М.: Наука, 1983. – 320 с.

3. Методы решения задач реального времени в электроэнергетике / А.З. Гамм, Ю.Н. Кучеров, С.И. Паламарчук и др. – Новосибирск: Наука, 1991. – 293 с.

4. Merrill H.M. Schweppe F.C. Bad data suppression in power system state estimation // IEEE Trans. on PAS, 1971. – Vol. 90, N6. – Pp.2718-2725.

5. Handschin E. Schweppe F.C. Kohlas J. Fiechter A. Bad data analysis for power system state estimation // IEEE Trans. on PAS, 1975. – Vol. 94, No 2. – Pp.329-337.

6. Гамм А.З., Колосок И.Н. Обнаружение грубых ошибок телеизмерений в электроэнергетических системах. – Новосибирск: Наука, 2000 – 152 с.

7. Хьюбер Дж.П. Робастность в статистике: Пер. с англ. – М.: Мир, 1984. – 304 с.

8. **Новые информационные технологии** в задачах оперативного управления электроэнергетическими системами / Н.А. Манов, Ю.Я. Чукреев, М.И. Успенский и др. – Екатеринбург: УрО РАН, 2002. – 205 с. 9. Falcao D.M. Cooke P.A. Brameller A. Power system tracking state estimation and bad data processing // IEEE Trans. on PAS, 1982. – Vol. 101, No 2. – Pp. 325-333.

10. Slutsker I.W. Bad data identification in power system state estimation based on measurement compensation and linear residual calculation // IEEE Trans. on PS, 1989. – Vol. 4, No 1. – Pp.53-60.

11. **Хохлов М.В.** Методы устойчивого оценивания состояния ЭЭС в оперативных задачах надежности // Надежность либерализованных систем энергетики. – Новосибирск: Наука, Сиб. изд. фирма РАН, 2004. (в печати).

Об авторе.

Хохлов Михаил Викторович, 1972 г.р. Окончил Ухтинский индустриальный институт в 1995 г. и очную аспирантуру Коми научного центра УрО РАН в 1998 г. Научный сотрудник лаборатории энергетических систем ИСЭиЭПС Коми НЦ УрО РАН. Автор и соавтор 15 научных публикаций. Область научных интересов – математические методы решения задач оперативного управления ЭЭС, робастное оценивание состояния, искусственные нейронные сети.